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LOW-ANGLE DISCLINATIONS ON ELASTIC PLANE:
A GAUGE-THEORY APPROACH

M.Pudlak*, V.A.Osipov

A gauge model of disclinations in elastic planar media is studied within the linear
approximation. It is shown that an exact vortex-like solution for a straight wedge disclination
does not depend on the coupling constants of the theory.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.

Manoyriossie JHCKAHHALHH HAa YIPYTOM IUIOCKOCTH:
KaTHOPOBOYHBIH MOAX0X

M.Ilyonax, B.A.Ocunos

B pamkax sMHe#HOrO npuGaMXeHHs u3yyeHa KatubpoBOYHas MONEb THCKIMHALMI Ha YII-
pyro#t mnockoctH. [lokazaHo, 4TO TOYHOE BUXDEBOE pellleHHe ANs NPAMONMHENHON KIHHOBON
AMCKITMHAIKK HE 3aBUCHT OT KOHCTAHT CBA3M TEOPHH.

Pa6ora srinonnena s JlaGoparopuu teopeTuyeckoit ¢usnku um.H.H.Boromo6osa OUSH.

One of the modern trends in condensed matter physics is a study of materials taking
the form of elastic surfaces (fullerenes, carbon nanotubes, membranes) {1, 2]. An important
role in these objects play topological defects, first of all disclinations. As is known, there
are always twelve disclinations on the closed hexatic elastic surface due to the Euler
theorem. For this reason, the disclination-induced effects on elastic surfaces are of consid-
erable interest.

As has been shown recently, an appropriate model for the description of disclinations
in elastic materials is the Edelen-Kadic (EK) gauge model [3]. In particular, within this
model an exact solution for a topologically unstable disclination vortex was found in [4]. It
was shown that the strain and stress fields caused by this vortex coincide with those for the
straight wedge disclination in a classical theory of disclinations. This finding confirms the
view of a disclination as the vortex of an elastic medium. Thus disclinations are among the
other known vortex-like objects in various media. It is interesting to note that the elastic
flux due to disclinations was found to be completely determined by the gauge vector fields.
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Notice that the above-mentioned solution was obtained within the restricted model
when only rotational symmetry was taken into account. In addition, the dislocation-induced
contribution to the Lagrangian was omitted. As a matter of fact, this contribution always
exists (so-called disclination driven dislocations [3]). The goal of the present paper is to
consider the most general model for disclinations on the elastic plane involving all possible
terms.

Let us start from the Lagrangian that is invariant under the inhomogeneous action of
the gauge group S0(2) [5]

L=L +L +L,, ()

where
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describes the elastic properties of the material while
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describe a disclination-induced contribution. In comparison with the general gauge model
[3} which considers both the dislocations and disclinations, we omit here the fields due to
dislocations. However, there is a contribution Lq) that comes from the dislocation part of the

general Lagrangian [5]. As is known, there are no pure disclinated materials and, in fact,
disclinations always give rise to disclination driven dislocations. In (2—4)

—gi J_ fe trai ' il J = -
E,z=8B, 60 By —3,, is the strain tensor, Dab—ej F,x' F,6=0W —d,W, ands, and s,

are the coupling constants. In accordance with the minimal replacement arguments, we have

B'=9 y'+ :e} W, (5)

where x'(X ) = X'(XA,T) characterizes the configuration at time 7 in terms of the coordinate
cover (XA) of a reference configuration, W _is the compensating gauge field associated with

the disclination field. In (3) the quantities kub are given by kAB=—5AB, 3 = 1/y, and

k(lb _ 6A B’

32178 and §°=0 for a#b. The

parameters y and & are the two positive «propagation parameters», e;. 1s a completely

=0 for a#b, whereas in (4) gAB

antisymmetric tensor, e;= 1, and A and u are the Lamé constants. We have used here the
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same notation as in [3,5]. The Euler-Lagrange equations for (1) take the following form in
the static case

A__j c AB
9,6, =£,fwcoj +s1x 8  Fap F™, (6)
0} 8, €% =29, [(s,(0% +5,)F P, M

where ()()2 =x’ X;» !=12. To avoid cumbersome expressions we will sometimes omit the

right order of the top and bottom indices which can be easily restored by using the

appropriate 8-symbols. The stress tensor c! is determined to be

ol= %[x (E,, 8% BL+20 (E, BI)L. ®)

First, let wus introduce the dimensionless variables via x'= sz/sI ¥ and

WA = sz/sI WA. The Euler-Lagrange equations (6) and (7) become

2
5
cA_jw =C "l =l¢ %
d, 6y —el{WCGj T SIkFAB AB’ ©)
2
~j i~1 25? ~\2 - BA |
18,81 = 5 3@+ ) E™, (10)

where x(%’) Ns VAT (x By, 8 =Vs /5, 0, F HAWB—BBVVA and the stress tensor is
found to be
2 =K& 5 yBI+E B (1)
=2 EcpOcp) B+ Eyc B

Here K=2X/y, and the strain tensor takes the form

AB~ P4 %P8 ©aB (12)

with E}; =d, ii+€; o WA. To simplify notation, we will omit the symbol «tilde» below.
The coupled nonlinear field equations (9) and (10) are difficult to solve in the general case.

Usually, the linearization procedure is used and the displacement vector «' is introduced as
follows

1P =8 2+ (B, (13)

Then, with the scaling parameter € all the fields are expanded in series of ¢:
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P02 _ 2
w=eu +euU,+..., WA—sWM-H: W2A+... (14)

Taking into account only disclination-induced displacements u’1 that are of interest here, we

get the first order equations in the following form,

9, (P +y*+ 1) FP =0, (15)
2
Au+(K+1)Vdivu—'+xs—1F FAB (16)
=)+ usz AB
where
jo=(K=1W - (K+2)yd W +Kxd W, —yd W +xd W, 7)
Jy=—(K-DW _+(K+2)x ayWy - Ky any +xd W ~y BXW'V. (18)

Hereafter we omit the index 1 denoting the order of the approximation. Let us emphasize
that we assume here s?/usz ~ 1/¢&. Other two possibilities sf/},ts2 ~ € and s%/us2 ~1 lead
to the standard theory [4]. Notice that for 5, =0 a solution of these equations was found in

[4]. An interesting property of this solution was its independence on the parameter s, as

2
well. This can be seen directly from (15) and (16). Let us choose the following ansatz for
(15) and (16)

W, =_§ W, W, =,‘§ W), u=xG(, (19)

where 1 =x2+y2. Using (19) we can rewrite (15) and (16) as follows

ar[(r2+ 1) 1‘@'-]:0, 20
’ ’ 2 2 ’ 2
k+2)[ 7+ 280 = g O --2“/2(’)+—s~‘ Yoy 1)
r r r W0 r

where G’ stands for dG /dr and W’ for dW /dr. A solution of (20) takes the form
W(r)=C, In(F+ 1)+ C,, (22)

Notice that the quantization rule for a given defect configuration reads as a circuital integral

I
Léwar=v.
- $War=v 23)
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Taking this into account, we immediately get that C ; =0. Thus the constant C, turns out to

be in fact a topological characteristic of the defect that is the Frank index v. For W(r)=v
(21) becomes remarkably simpler and has a solution

v
K+2

G(ry=- Inr—%Cr + G (24)

Since the boundary condition yields ui(0)=0 we must put C,=0. Turning back to the

dimensional variables, one finally obtains

. . N
u'=—x'( > anS—Ir+C3), (25)

2

where Cj is still an arbitrary constant. As is seen, the term with s, and s, only renormalizes
the constant C,. In particular, for the straight wedge disclination on a disk of radius R with
a boundary condition in the form ui(R) =0 one obtains

i i_V r
u=- K+21n (26)

We see that parameters 5, and S, drop out from (25). Similarly, for the most-used boundary
condition G, n,=0 at the free surfaces one can reproduce the well-known stress fields for

a wedge disclination on a disk (see details in [4]). Thus one can conclude that the
information which is carried out by the coupling constants s, and s, is lost within the linear

approximation. Since one can expect that just a combination of these constants determines
the core radius of disclinations, it is important to study the nonlinear equations (6) and (7).
The results of this investigation will be published elsewhere. It is easy to check that the
modified constant C; disappears for dipoles of disclinations as well. Indeed, the dipole

consists of two disclinations with opposite directed Frank vectors. In this case, the terms
with Sps Spe and C3 in (25) cancel each other thus leading to standard expressions.

This work has been supported by the Russian Foundation for Basic Research under
grant No.97-02-16623, and the Slovak Scientific Grant Agency, grant No.4173.
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